Custom Search

Friday, March 28, 2008

Vectors and hosts

Viruses have targeted various types of transmission media or hosts. This list is not exhaustive:
Binary executable files(such as COM files and EXE files in MS-DOS, Portable Executable files in Microsoft Windows, and ELF files in)
Volume Boot Records of and hard disk partitions
The master boot record (MBR) of a hard disk
General-purpose script files (such as batch files in MS-DOS and Microsoft Windows, VBScript files, and shell script files on Unix-like platforms).
Application-specific script files (such as Telix-scripts)
Documents that can contain macros (such as Microsoft Word documents, Microsoft Excel spreadsheets, AmiPro documents, and Microsoft Access database files)
Cross-site scripting vulnerabilities in web applications
Arbitrary computer files. An exploitable buffer overflow, format string, race condition or other exploitable bug in a program which reads the file could be used to trigger the execution of code hidden within it. Most bugs of this type can be made more difficult to exploit in computer architectures with protection features such as an execute disable bit and/or address space layout randomization.
PDFs, like HTML, may link to malicious code citation needed]
It is worth noting that some virus authors have written an .EXE extension on the end of .PNG (for example), hoping that users would stop at the trusted file type without noticing that the computer would start with the final type of file. (Many operating systems hide the extensions of known file types by default, so for example a filename ending in ".png.exe" would be shown ending in ".png".) See Trojan horse (computing).

Infection strategies

In order to replicate itself, a virus must be permitted to execute code and write to memory. For this reason, many viruses attach themselves to executable files that may be part of legitimate programs. If a user tries to start an infected program, the virus' code may be executed first. Viruses can be divided into two types, on the basis of their behavior when they are executed. Nonresident viruses immediately search for other hosts that can be infected, infect these targets, and finally transfer control to the application program they infected. Resident viruses do not search for hosts when they are started. Instead, a resident virus loads itself into memory on execution and transfers control to the host program. The virus stays active in the background and infects new hosts when those files are accessed by other programs or the operating system itself.
Nonresident viruses
Nonresident viruses can be thought of as consisting of a finder module and a replication module. The finder module is responsible for finding new files to infect. For each new executable file the finder module encounters, it calls the replication module to infect that file.

Resident viruses
Resident viruses contain a replication module that is similar to the one that is employed by nonresident viruses. However, this module is not called by a finder module. Instead, the virus loads the replication module into memory when it is executed and ensures that this module is executed each time the operating system is called to perform a certain operation. For example, the replication module can be called each time the operating system executes a file. In this case, the virus infects every suitable program that is executed on the computer.
Resident viruses are sometimes subdivided into a category of fast infectors and a category of slow infectors. Fast infectors are designed to infect as many files as possible. For instance, a fast infector can infect every potential host file that is accessed. This poses a special problem to anti-virus software, since a virus scanner will access every potential host file on a computer when it performs a system-wide scan. If the virus scanner fails to notice that such a virus is present in memory, the virus can "piggy-back" on the virus scanner and in this way infect all files that are scanned. Fast infectors rely on their fast infection rate to spread. The disadvantage of this method is that infecting many files may make detection more likely, because the virus may slow down a computer or perform many suspicious actions that can be noticed by anti-virus software. Slow infectors, on the other hand, are designed to infect hosts infrequently. For instance, some slow infectors only infect files when they are copied. Slow infectors are designed to avoid detection by limiting their actions: they are less likely to slow down a computer noticeably, and will at most infrequently trigger anti-virus software that detects suspicious behavior by programs. The slow infector approach does not seem very successful, however.

Computer virus

A computer virus is a computer program that can copy itself and infect a computer without permission or knowledge of the user. However, the term "virus" is commonly used, albeit erroneously, to refer to many different types of malware programs. The original virus may modify the copies, or the copies may modify themselves, as occurs in a metamorphic virus. A virus can only spread from one computer to another when its host is taken to the uninfected computer, for instance by a user sending it over a network or the Internet, or by carrying it on a removable medium such as a floppy disk , CD, or USB drive. Meanwhile viruses can spread to other computers by infecting files on a network file system or a file system that is accessed by another computer. Viruses are sometimes confused with computer worms and Trojan horses. A worm can spread itself to other computers without needing to be transferred as part of a host, and a Trojan horse is a file that appears harmless. Both worms and Trojans will cause harm to computers when executed.
Most personal computers are now connected to the Internet and to local area networks, facilitating the spread of malicious code. Today's viruses may also take advantage of network services such as the World Wide Web, e-mail, Instant Messaging and file sharing systems to spread, blurring the line between viruses and worms. Furthermore, some sources use an alternative terminology in which a virus is any form of self-replicating malware.
Some viruses are programmed to damage the computer by damaging programs, deleting files, or reformatting the hard disk. Others are not designed to do any damage, but simply replicate themselves and perhaps make their presence known by presenting text, video, or audio messages. Even these benign viruses can create problems for the computer user. They typically take up computer memory used by legitimate programs. As a result, they often cause erratic behavior and can result in system crashes. In addition, many viruses are bug -ridden, and these bugs may lead to system crashes and data loss.

PC Desktop